MTH 203- Quiz 2 Solutions

1. Let G be a group. If $G / Z(G)$ is cyclic, then show that G is abelian.

Solution. Let $N=Z(G)$. Since G / N is abelian, we have $G / N=\langle x N\rangle$ for some $x N \in G / N$. In other words, for each $h N \in G / N$, there exists $k \in \mathbb{Z}$ such that $h N=x^{k} N$. Thus, every $g \in G$ can be written in the form $x^{k} z$ for some $z \in N$ and $k \in \mathbb{Z}$. Now consider arbitrary $g_{1}, g_{2} \in G$. Then for $i=1,2$, we have $g_{i}=x^{k_{i}} z_{i}$, where $z_{i} \in N$ and $k_{i} \in \mathbb{Z}$. Thus, we have:

$$
\begin{array}{rlrl}
g_{1} g_{2} & =\left(x^{k_{1}} z_{1}\right)\left(x^{k_{2}} z_{2}\right) \\
& =\left(x^{k_{1}}\right)\left(z_{1} x^{k_{2}}\right) z_{2} & \text { (Associativity in } G) \\
& =\left(x^{k_{1}}\right)\left(x^{k_{2}} z_{1}\right) z_{2} & \text { (Since } \left.z_{1} \in Z(G)\right) \\
& =\left(x^{k_{1}} x^{k_{2}}\right)\left(z_{1} z_{2}\right) & \text { (Associativity in } G) \\
& =\left(x^{k_{1}+k_{2}}\right)\left(z_{2} z_{1}\right) & \text { (Since } \left.z_{i} \in Z(G)\right) \\
& =\left(x^{k_{2}+k_{1}}\right)\left(z_{2} z_{1}\right) & \\
& =\left(x^{k_{2}} x^{k_{1}}\right)\left(z_{2} z_{1}\right) & \\
& =x^{k_{2}}\left(x^{k_{1}} z_{2}\right) z_{1} & \quad \text { (Associativity in } G) \\
& \left.=x^{k_{2}}\left(z_{2} x^{k_{1}}\right) z_{1} \quad \text { (Since } z_{1} \in Z(G)\right) \\
& \left.=\left(x^{k_{2}} z_{2}\right)\left(x^{k_{1}} z_{1}\right) \quad \text { (Associativity in } G\right) \\
& =g_{2} g_{1}, & &
\end{array}
$$

which shows that G is commutative.
2. Determine whether the following statements are true or false. Justify your answers.
(a) For $n \geq 3$, there exists a surjective homomorphism $\mathbb{Z}_{2 n} \rightarrow D_{2 n}$.
(b) For $n \geq 3$, there exists an injective homomorphism $C_{n} \rightarrow D_{2 n}$.

Solution. (a) This statement is false. Suppose that there exists a surjective homomorphism $\varphi: \mathbb{Z}_{2 n} \rightarrow D_{2 n}$. Then by the First Isomorphism Theorem, we have:

$$
\mathbb{Z}_{2 n} / \operatorname{ker} \varphi \cong D_{2 n}
$$

Moreover, $\operatorname{ker} \varphi$ is cyclic as it a (normal) subgroup of the cyclic group $\mathbb{Z}_{2 n}$. Thus, it follows that $\mathbb{Z}_{2 n} / \operatorname{ker} \varphi$ is abelian as it is the quotient two abelian groups (why?). Since $D_{2 n}$ is non-abelian, this clearly contradicts the fact that $\mathbb{Z}_{2 n} / \operatorname{ker} \varphi \cong D_{2 n}$.
(b) The statement is true. For $0 \leq k \leq n-1$, consider the map

$$
\varphi: C_{n} \rightarrow D_{2 n}=\langle r, s\rangle: e^{i 2 \pi k / n} \stackrel{\varphi}{\mapsto} r^{k} .
$$

The map φ is clearly well-defined. Furthermore, φ is a homomorphism since:

$$
\begin{aligned}
\varphi\left(e^{i 2 \pi k_{1} / n} e^{i 2 \pi k_{2} / n}\right) & =\varphi\left(e^{i 2 \pi\left(k_{1} /+k_{2}\right) / n}\right) & & \\
& =r^{k_{1}+k_{2}} & & \text { (By definition of } \varphi) \\
& =r^{k_{1}} r^{k_{2}} & & \\
& =\varphi\left(e^{i 2 \pi k_{1} / n}\right) \varphi\left(e^{i 2 \pi k_{2} / n}\right) & & (\text { By definition of } \varphi)
\end{aligned}
$$

To see that φ is injective, it suffices to show that $\operatorname{ker} \varphi=\{1\}$. However, this follows from the argument that:

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{g \in C_{n}: \varphi(g)=1\right\} & & \text { (By definition of } \operatorname{ker} \varphi) \\
& =\left\{e^{i 2 \pi k / n} \in C_{n}: \varphi\left(e^{i 2 \pi k / n}\right)=1\right\} & & \text { (By definition of } \varphi \text {) } \\
& =\left\{e^{i 2 \pi k / n} \in C_{n}: r^{k}=1\right\} & & \\
& =\left\{e^{i 2 \pi k / n} \in C_{n}: k=0\right\} & & \\
& =\{1\} . & &
\end{aligned}
$$

